Visualization of the spatial arrangement of nuclear organization using three-dimensional fluorescence in situ hybridization in early mouse embryos: A new “EASI-FISH chamber glass” for mammalian embryos

نویسندگان

  • Masataka NAKAYA
  • Hideyuki TANABE
  • Shingo TAKAMATSU
  • Misaki HOSOKAWA
  • Tasuku MITANI
چکیده

The fertilized oocyte begins cleavage, leading to zygotic gene activation (ZGA), which re-activates the resting genome to acquire totipotency. In this process, genomic function is regulated by the dynamic structural conversion in the nucleus. Indeed, a considerable number of genes that are essential for embryonic development are located near the pericentromeric regions, wherein the heterochromatin is formed. These genes are repressed transcriptionally in somatic cells. Three-dimensional fluorescence in situ hybridization (3D-FISH) enables the visualization of the intranuclear spatial arrangement, such as gene loci, chromosomal domains, and chromosome territories (CTs). However, the 3D-FISH approach in mammalian embryos has been limited to certain repeated sequences because of its unfavorable properties. In this study, we developed an easy-to-use chamber device (EASI-FISH chamber) for 3D-FISH in early embryos, and visualized, for the first time, the spatial arrangements of pericentromeric regions, the ZGA-activated gene (Zscan4) loci, and CTs (chromosome 7), simultaneously during the early cleavage stage of mouse embryos by 3D-FISH. As a result, it was revealed that morphological changes of the pericentromeric regions and CTs, and relocation of the Zscan4 loci in CTs, occurred in the 1- to 4-cell stage embryos, which was different from those in somatic cells. This convenient and reproducible 3D-FISH technique for mammalian embryos represents a valuable tool that will provide insights into the nuclear dynamics of development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromosomal Aneuploidies and Early Embryonic Developmental Arrest

Background Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fe...

متن کامل

Tips and Tricks in Fluorescence In-situ Hybridization (FISH)- based Preimplantation Genetic Diagnosis /Screening (PGD/PGS)

As numerical and structural defects in chromosomes are an inevitable consequence of IVF, Pre-implantation genetic diagnosis and screening (PGD/PGS) methods are used for detecting abnormalities in embryos before implantation to the uterus to increase the successful rate of IVF. Pre-implantation genetic diagnosis and screening approaches can be achieved by different techniques such as NGS, CGH an...

متن کامل

I-37: Genome Instability and DNA Damage in Male Somatic and Germ Cells Expressed as Chromosomal Microdeletion and Aneuploidy Is A Major Cause of Male Infertility

Background: Sperm chromatin insufficiencies leading to low sperm count and quality, infertility and transmission of chromosomal microdeletion and aneuploidies to next generations can be due to exposure to environmental pollutions, chemicals and natural or manmade ionizing radiation. In this project which has continued for more than 10 years and is unique in many technical aspects in Iran and in...

متن کامل

P-86: Production of Cloned Mice by Somaticm Cell Nuclear Transfer

Background: For several years, mammalian cloning by splitting an early embryo or nuclear transfer into oocytes method has been successfully performed. Cloning is now also possible using adult somatic cells. Although it has now been 15 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), the success rate for producing live offspring by cloning is lo...

متن کامل

I-11: Cryopreservation of Canine Embryos

Background: The assisted reproductive techniques (ARTs) such as in vitro fertilization, embryo transfer and cryopreservation of gametes have considerably contributed to the development of biomedical sciences in addition to improved breeding in domestic animals and infertility treatment in humans. However, ARTs used in canine species have strictly limited utility when compared with other mammali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2017